Джуда Перл
Почему? Новая наука о причинно-следственной связи
08.10.2019
рекомендует
Издатель: Basic Books, Год выпуска: 2018

Почему? Новая наука о причинно-следственной связи

Рейтинги:

  • Одна из лучших научных книг 2018 года по версии Science Friday
  • Издание рекомендует Румман Чоудхури, глава отдела искусственного интеллекта компании Accenture
  • The New York Times считает, что эта книга поможет понять, для чего полезны большие данные, а для чего – нет

Об авторах:

Джуда Перл – профессор Калифорнийского университета, ученый, разработавший математический аппарат байесовских сетей. Проводил исследования в области искусственного интеллекта. В 2011 году получил престижную премию в области информатики – Премию Тьюринга.

Дана Маккeнзи – математик, автор научно-популярных книг о математике и точных науках.

Рекомендовано Киево-Могилянской Бизнес-Школой
Авторы
Джуда Перл
Дана Маккeнзи
Дата обзора
08 октября 2019
Слушайте обзор
0:00 0:00
646

Основная идея

Мы часто слышим фразу «Корреляция – это не причинно-следственная связь». Но табу, некогда наложенное статистикой на разговоры о каузальности, постепенно исчезает, и не в последнюю очередь благодаря революции причинности. В чем же состоит суть новой науки? Почему большие данные не могут ответить на все вопросы и как все же научиться искать на них ответы?

Причинный вывод

Книга рассказывает о новой науке, изменившей способ, которым мы отличаем факты от вымысла. Эта наука влияет на повседневную жизнь людей и может оказывать значительное воздействие на разные сферы, начиная от создания новых лекарств и заканчивая экономическими вопросами или глобальным потеплением. Несмотря на то, что спектр проблемных зон достаточно широк, эта наука позволяет рассматривать их унифицированно, что казалось невозможным еще 20 лет назад. Авторы называют эту науку «причинный вывод» (causal inference).

Десятки тысяч лет назад люди начали понимать, что некоторые вещи становятся причиной других событий, и если повлиять на причину, то изменится и следствие. Благодаря этому открытию возникли организованные сообщества, города, а также цивилизация, опирающаяся на науку и технологии. Произошло это благодаря вопросу: «Почему?»

Причинный вывод основывается на том же вопросе. Эта наука опирается на тезис: человеческий мозг – самый совершенный инструмент для управления причинами и следствиями. Он хранит невероятный объем каузального знания, которое, будучи подтвержденным данными, способно помочь нам найти ответы на самые сложные вопросы современности.

Более того, авторы считают, что если мы поймем логику каузального мышления, то сможем воспроизвести ее на компьютере и создать искусственного ученого. Этот робот будет открывать неизвестные доселе феномены, искать объяснения текущим научным дилеммам, разрабатывать новые эксперименты и постоянно извлекать новые каузальные знания из окружающей среды.

Однако это произойдет еще не сегодня, в то время как новая наука уже сейчас изменяет мышление ученых и влияет на наши жизни. В частности, она помогает искать ответы на такие вопросы:

— Насколько эффективно определенное средство в профилактике заболевания?

— Что стало причиной роста продаж: новый закон или наша рекламная кампания?

— Стоит ли мне менять работу?

Во всех этих пунктах есть нечто общее: причинно-следственные отношения. Наш мир полон подобных вопросов и нуждается в ответах, но до выделения причинного вывода в отдельное направление процесс поиска решений был очень сложен.

Почему авторы называют причинный вывод новой наукой, если еще Вергилий в 29 году до н.э. говорил: «Счастлив тот, кто смог понять причины вещей?». Самым серьезным препятствием они считают огромный разрыв между словарем, которым мы пользуемся, задавая каузальные вопросы, и традиционным научным словарем, с помощью которого формулируются научные теории.

Простой пример: показания барометра B = kP, где k  – коэффициент пропорциональности, а Р – атмосферное давление. Правила алгебры позволяют переписать это уравнение так: P = B/k, k = B/p, B – kP = 0. Ни одна из букв B, k или P не имеют приоритета перед другими. Тогда как мы можем быть уверены, что это давление влияет на показания барометра, а не наоборот? И как мы можем описать научным языком все те причинно-следственные связи, которые наблюдаем вокруг нас?

Статистика и причинность

Научные инструменты были изначально разработаны для удовлетворения потребностей ученых. До определенного момента этого было достаточно. Но научная любознательность двигала ученых вперед в поисках ответов на каузальные вопросы в разных сферах, например в законодательстве, бизнесе, медицине, формировании политик. И оказалось, что для этого инструментов уже недостаточно.

Такое случалось не раз в истории человечества. Например, еще 400 лет назад люди не страдали из-за того, что не умеют управлять неопределенностью. Но после изобретения новых азартных игр наука заинтересовалась направлением, которое позже получило название теории вероятности. И только когда страховым компаниям потребовались точные оценки продолжительности жизни, математики стали рассчитывать ожидаемую величину этого показателя.

Потребность в теории причинности возникла примерно в то же время, когда появилась статистика. На самом деле современная статистика родилась из каузальных вопросов о наследственности, которые ставили Карл Пирсон и Фрэнсис Гальтон, и их попыток найти ответ, исследуя данные разных поколений. К сожалению, они потерпели неудачу, но вместо того чтобы остановиться и спросить: «Почему?», они стали развивать статистику, свободную от причинности.

Why_30_rus

Этот момент стал критическим в истории науки. Появилась возможность оснастить каузальные вопросы правильным словарем, однако она была растрачена впустую. В результате создание «языка причинности» было отложено более чем на 50 лет. А вместе с тем был наложен запрет на разработку инструментов, методов и принципов, имеющих отношение к причинно-следственным связям.

С этим запретом знакомы все, кто изучал основы статистики. Каждый студент должен запомнить раз и навсегда: корреляция не означает причинности. Конечно, для этого есть разумное основание, ведь если петух кукарекает перед рассветом, это не означает, что без его кукареканья солнце не встанет.

Однако проблема в том, что, хотя статистика и говорит, что причинность не равна корреляции, она не объясняет, что же такое причинность. Часто студентам вообще запрещают говорить о том, что Х – причина У, а только о том, что Х и У связаны между собой. В итоге статистика сфокусировалась преимущественно на сборе данных, но не на их интерпретации. Считалось, что все ответы можно найти в данных, и большего искать не следует.

Отголоски такого подхода слышны до сих пор. Мы живем в эпоху, когда считается: большие данные – ключ к решению всех проблем человечества. Курсы по data science (науке о данных) пользуются огромной популярностью в университетах, а карьера аналитика данных становится все прибыльнее. И здесь кроется опасность. Авторы пишут: сами по себе данные чрезвычайно глупы. Собранная информация может поведать вам, что люди, которые принимают лекарства, выздоравливают быстрее, чем те, кто этого не делал, однако данные не расскажут, почему так произошло. А ведь причина может оказаться любой, в том числе такой, которая вообще исключит лекарство из уравнения.

Мы живем в эпоху, когда считается: большие данные – ключ к решению всех проблем человечества

С каждым днем мы все чаще сталкиваемся с примерами из науки или бизнеса, которые доказывают: одних данных недостаточно. Поэтому последние 30 лет теория причинности стала развиваться быстрыми темпами. Столетие назад вопрос о том, могут ли сигареты стать причиной проблем со здоровьем, считался бы ненаучным. 20 лет назад спросить специалиста по статистике, аспирин ли помог справиться с головной болью, означало узнать, верит ли он в вуду. Однако сегодня социальные ученые, IT-специалисты и даже некоторые экономисты регулярно задают подобные вопросы. Авторы называют такую трансформацию каузальной революцией.

Лестница причинности

Люди довольно давно поняли, что мир не состоит из сухих фактов (того, что сегодня мы называем данными). Скорее, эти факты склеиваются между собой причинно-следственными связями. . Ни одна машина не может генерировать объяснения из сырых данных. Ей необходим толчок.

Авторы выделяют три когнитивных уровня, которыми должен овладеть человек (или алгоритм) на пути к пониманию каузальности: наблюдать, делать и представлять. Каждому из них соответствует своя ступень на лестнице причинности.

  1. Ассоциация. Соответствует уровню наблюдения. Этим уровнем владеют даже животные. Он заключается в способности подмечать повторения в том, что мы видим. Например, сова наблюдает, как движется мышь, и понимает, где грызун будет в следующий момент. Точно так же поступает компьютерная программа, играющая в игру Го: она исследует базу данных, состоящую из миллионов партий, чтобы разобраться, какие шаги чаще всего приводят к победе.

Другими словами, первая ступень лестницы причинности подразумевает прогнозирование на основе предыдущих наблюдений. Ее можно описать вопросом: «Что, если я увижу что-то?» Скажем, маркетинг-директор магазина может размышлять: «Насколько вероятно, что клиент, который купил зубную пасту, также купит зубную нить?» Мы говорим, что одно событие ассоциировано с другим, если тот факт, что вы увидели первое, повышает вероятность увидеть второе.

Каузальные объяснения, а не сухие факты, составляют основной объем знаний, и именно они в будущем должны стать основой искусственного интеллекта

Вопросы вроде того, над которым размышляет маркетинг-директор, являются хлебом статистики. Чаще всего отвечают на них, собирая и анализируя данные (например, о покупательском поведении). Специалисты по статистике разработали немало инструментов, которые позволяют находить ассоциации между переменными. Пресловутая корреляция является типичным измерением ассоциации.

Некоторые ассоциации могут иметь очевидные каузальные интерпретации, другие нет. Однако статистика не дает ответа на вопрос, что является причиной, а что следствием, зубная паста или зубная нить. А с точки зрения маркетинг-директора это вообще не имеет значения. Хорошие прогнозы не обязательно подразумевают хорошие объяснения. В конце концов, сова может быть отличным охотником, не понимая, почему мышь движется в том или ином направлении.

Автор предполагает, что читатели удивятся, что системы машинного обучения находятся на том же уровне лестницы причинности, что и животные, – на самом низком. Ведь, казалось бы, они являются вершиной технического прогресса. Однако на самом деле существующий ИИ еще очень далек от человеческого мышления, и его появление – вряд ли дело ближайших лет.

Why_33_rus

Программы машинного обучения, как и 30 лет назад, оперируют практически полностью на ассоциативном уровне. Их приводит в движение поток данных, и они пытаются вычленить в них закономерность примерно так же, как статистик пытается провести прямую линию среди множества точек. Алгоритмы продолжают совершенствоваться в точности и скорости вычислений, но это не обеспечивает эволюционный скачок. И если, к примеру, программисты автономного автомобиля захотят, чтобы он реагировал по-другому в новых ситуациях, им придется самим задать такие реакции. Не стоит ожидать, что ИИ сам определит, что пешеход с бутылкой виски в руке способен швырнуть ею в машину, если та просигналит. Недостаток гибкости и адаптивности является неотъемлемым свойством систем, которые находятся на нижней ступени лестницы причинности.

  1. Вмешательство (интервенция). На этот уровень мы переходим, когда начинаем изменять мир вокруг нас. Пример типичного для этой ступени вопроса: «Что случится с продажами зубной нити, если мы удвоим цену на зубную пасту?» Чтобы найти ответ, недостаточно иметь много данных– нужен новый тип знания.

Интервенция соответствует уровню «делать» и поэтому находится выше, чем ассоциация, на лестнице причинности. Многие ученые с болью обнаруживают, что ни один из статистических методов не достаточен для ответа на простой вопрос вроде приведенного выше.

Почему нельзя поискать данные о периоде, когда зубная паста стоила вдвое дороже, и спрогнозировать результат? Потому что повышение цены в тот момент могло быть вызвано разными причинами (скажем, сокращением поставок у конкурентов), а сейчас вы планируете осознанный шаг. А значит, скорее всего, исход будет другим.

Один из способов предсказать результат интервенции – провести эксперимент в контролируемых условиях. Большие компании вроде Facebook часто так и поступают, чтобы проверить свои гипотезы. Однако интересно то, что иногда успешно предсказать эффект от вмешательства можно и без эксперимента. Например, менеджер по продажам может создать модель покупательского поведения, которая будет учитывать рыночную ситуацию. Точная каузальная модель сможет дать ответ на вопрос, что произойдет, если изменить цену.

Итак, вторая ступень лестницы причинности отвечает на вопрос «Что, если мы сделаем что-то?» или на вопрос «Как?». Скажем, если на складе осталось много зубной пасты, менеджера интересует: как можно ее продать? По какой цене ее стоит предлагать? И снова ответ на эти вопросы требует моделирования интервенции перед началом действий.

Мы постоянно производим вмешательства в повседневной жизни, например, когда принимаем таблетку от головной боли. Мы воздействуем на одну переменную (количество аспирина в нашем теле), чтобы повлиять на другую (статус головной боли). Если мы были правы в своей каузальной гипотезе об аспирине, то в результате значение второй переменной изменится с «есть головная боль» на «нет головной боли».

  1. Контрфакты. Интервенция не дает ответы на все вопросы, хоть и является важной ступенью лестницы причинности. Если головная боль прошла, нас по-прежнему может интересовать, почему это случилось. Стал ли причиной принятый аспирин? А может быть, съеденная пища или услышанные хорошие новости? Для поиска ответов на эти вопросы недостаточно данных или экспериментов – нужно, по сути, вернуться назад во времени и узнать: что было бы, если бы я не принял аспирин? Поэтому уровень контрфактов связан с воображением, способностью представить себе то, что могло пойти по-другому.

У контрфактов сложные отношения с данными, потому что данные. Они не могут рассказать, что произошло бы в воображаемом мире. Однако человеческий мозг на это способен, и это отличает его от животных и систем машинного обучения.

Если вернуться к примеру с зубной пастой, то вопрос верхнего уровня может звучать так: «Какова вероятность, что клиент, который купил зубную пасту, приобрел бы ее, если бы цена была вдвое выше?» В поисках ответа мы будем сравнивать реальный мир (где человек купил товар по текущей цене) с воображаемым (где цена в два раза больше). Наличие каузальной модели позволяет отвечать на подобные вопросы. А представить наглядно модель причинности помогает инструмент под названием «каузальная диаграмма», где в виде графа представлены переменные и причинно-следственные связи между ними (пример такой диаграммы – на рис.1).

 Why_35_rus

 

Большие данные и каузальные модели

В науке, бизнесе, государственном управлении и даже спорте количество сырых данных в последние годы растет с ошеломляющим темпом. Особенно заметно это для активных пользователей социальных сетей. К примеру, в 2014 году Facebook хранил 300 петабайт данных (петабайт равен 1024 терабайт) 2 млрд активных пользователей, что составляет 150 Мб на человека. Научные базы данных также стремительно растут. Скажем, проект «1000 геномов» собрал 200 терабайт информации, составив самый большой в мире публичный каталог данных о генотипе.

Why_34_rus

Однако большие данные влияют не только на прогресс в передовых областях науки, но и на жизни рядовых ученых. Например, пару десятилетий назад морской биолог мог потратить месяцы, описывая различные виды. Сейчас же он имеет мгновенный доступ к онлайн-данным обо всех рыбах и других животных. И вместо выполнения рутинных задач биолог может заниматься более творческой работой.

Возникает вопрос: что же дальше? Как извлечь смысл из набора цифр, бит и пикселей? Кто-то по-прежнему считает, что ответ на все наши вопросы (например: существует ли ген, отвечающий за рак легких? в каких солнечных системах есть планеты, похожие на Землю? и т.д.) можно найти в самих данных, нужно лишь стать достаточно продвинутыми в анализе. Однако большая часть наших вопросов носит причинный характер, а значит, на них нельзя ответить только с помощью данных. Они требуют от нас сформировать модель процесса, который генерирует данные, или хотя бы отдельных его аспектов. Если вы видите исследование, которое анализирует данные без построения модели, то можете быть уверены: оно только резюмирует данные, но не интерпретирует их.

Конечно, данные сами по себе также полезны. Они могут быть необходимым первым шагом к поиску интересных шаблонов ассоциаций и формулировке вопросов. Однако не стоит останавливаться на нем, нужно идти дальше – к интерпретации данных.

Сможем ли мы создать ИИ, который поможет нам в этом, который будет способен думать? Скорее всего, да, если машины освоят все три уровня лестницы причинности. Алгоритмы, способные отвечать на каузальные и контрфактуальные вопросы, уже существуют. Если исследователи в сфере ИИ внедрят их, мы станем гораздо ближе к появлению мыслящих роботов.

646
kmbs
Интеллектуальный партнер проекта Digest